Step |
Hyp |
Ref |
Expression |
1 |
|
neitr.1 |
|
2 |
|
nfv |
|
3 |
|
nfv |
|
4 |
|
nfre1 |
|
5 |
3 4
|
nfan |
|
6 |
2 5
|
nfan |
|
7 |
|
simpl |
|
8 |
7
|
anim2i |
|
9 |
|
simp-5r |
|
10 |
|
simp1 |
|
11 |
|
simp2 |
|
12 |
1
|
restuni |
|
13 |
10 11 12
|
syl2anc |
|
14 |
13
|
ad5antr |
|
15 |
9 14
|
sseqtrrd |
|
16 |
11
|
ad5antr |
|
17 |
15 16
|
sstrd |
|
18 |
10
|
ad5antr |
|
19 |
|
simplr |
|
20 |
1
|
eltopss |
|
21 |
18 19 20
|
syl2anc |
|
22 |
21
|
ssdifssd |
|
23 |
17 22
|
unssd |
|
24 |
|
simpr1l |
|
25 |
24
|
3anassrs |
|
26 |
|
simpr |
|
27 |
25 26
|
sseqtrd |
|
28 |
|
inss1 |
|
29 |
27 28
|
sstrdi |
|
30 |
|
inundif |
|
31 |
|
simpr1r |
|
32 |
31
|
3anassrs |
|
33 |
26 32
|
eqsstrrd |
|
34 |
|
unss1 |
|
35 |
33 34
|
syl |
|
36 |
30 35
|
eqsstrrid |
|
37 |
|
sseq2 |
|
38 |
|
sseq1 |
|
39 |
37 38
|
anbi12d |
|
40 |
39
|
rspcev |
|
41 |
19 29 36 40
|
syl12anc |
|
42 |
|
indir |
|
43 |
|
disjdifr |
|
44 |
43
|
uneq2i |
|
45 |
|
un0 |
|
46 |
42 44 45
|
3eqtri |
|
47 |
|
df-ss |
|
48 |
47
|
biimpi |
|
49 |
46 48
|
eqtr2id |
|
50 |
15 49
|
syl |
|
51 |
|
vex |
|
52 |
|
vex |
|
53 |
52
|
difexi |
|
54 |
51 53
|
unex |
|
55 |
|
sseq1 |
|
56 |
|
sseq2 |
|
57 |
56
|
anbi2d |
|
58 |
57
|
rexbidv |
|
59 |
55 58
|
anbi12d |
|
60 |
|
ineq1 |
|
61 |
60
|
eqeq2d |
|
62 |
59 61
|
anbi12d |
|
63 |
54 62
|
spcev |
|
64 |
23 41 50 63
|
syl21anc |
|
65 |
10
|
ad3antrrr |
|
66 |
10
|
uniexd |
|
67 |
1 66
|
eqeltrid |
|
68 |
67 11
|
ssexd |
|
69 |
68
|
ad3antrrr |
|
70 |
|
simplr |
|
71 |
|
elrest |
|
72 |
71
|
biimpa |
|
73 |
65 69 70 72
|
syl21anc |
|
74 |
64 73
|
r19.29a |
|
75 |
8 74
|
sylanl1 |
|
76 |
|
simprr |
|
77 |
6 75 76
|
r19.29af |
|
78 |
|
inss2 |
|
79 |
|
sseq1 |
|
80 |
78 79
|
mpbiri |
|
81 |
80
|
adantl |
|
82 |
81
|
exlimiv |
|
83 |
82
|
adantl |
|
84 |
13
|
adantr |
|
85 |
83 84
|
sseqtrd |
|
86 |
10
|
ad4antr |
|
87 |
68
|
ad4antr |
|
88 |
|
simplr |
|
89 |
|
elrestr |
|
90 |
86 87 88 89
|
syl3anc |
|
91 |
|
simprl |
|
92 |
|
simp3 |
|
93 |
92
|
ad4antr |
|
94 |
91 93
|
ssind |
|
95 |
|
simprr |
|
96 |
95
|
ssrind |
|
97 |
|
simp-4r |
|
98 |
96 97
|
sseqtrrd |
|
99 |
90 94 98
|
jca32 |
|
100 |
99
|
ex |
|
101 |
100
|
reximdva |
|
102 |
101
|
impr |
|
103 |
102
|
an32s |
|
104 |
103
|
expl |
|
105 |
104
|
exlimdv |
|
106 |
105
|
imp |
|
107 |
|
sseq2 |
|
108 |
|
sseq1 |
|
109 |
107 108
|
anbi12d |
|
110 |
109
|
rspcev |
|
111 |
110
|
rexlimivw |
|
112 |
106 111
|
syl |
|
113 |
85 112
|
jca |
|
114 |
77 113
|
impbida |
|
115 |
|
resttop |
|
116 |
10 68 115
|
syl2anc |
|
117 |
92 13
|
sseqtrd |
|
118 |
|
eqid |
|
119 |
118
|
isnei |
|
120 |
116 117 119
|
syl2anc |
|
121 |
|
fvex |
|
122 |
|
restval |
|
123 |
121 68 122
|
sylancr |
|
124 |
123
|
eleq2d |
|
125 |
92 11
|
sstrd |
|
126 |
|
eqid |
|
127 |
126
|
elrnmpt |
|
128 |
127
|
elv |
|
129 |
|
df-rex |
|
130 |
128 129
|
bitri |
|
131 |
1
|
isnei |
|
132 |
131
|
anbi1d |
|
133 |
132
|
exbidv |
|
134 |
130 133
|
syl5bb |
|
135 |
10 125 134
|
syl2anc |
|
136 |
124 135
|
bitrd |
|
137 |
114 120 136
|
3bitr4d |
|
138 |
137
|
eqrdv |
|