Metamath Proof Explorer


Theorem neitr

Description: The neighborhood of a trace is the trace of the neighborhood. (Contributed by Thierry Arnoux, 17-Jan-2018)

Ref Expression
Hypothesis neitr.1 X = J
Assertion neitr J Top A X B A nei J 𝑡 A B = nei J B 𝑡 A

Proof

Step Hyp Ref Expression
1 neitr.1 X = J
2 nfv d J Top A X B A
3 nfv d c J 𝑡 A
4 nfre1 d d J 𝑡 A B d d c
5 3 4 nfan d c J 𝑡 A d J 𝑡 A B d d c
6 2 5 nfan d J Top A X B A c J 𝑡 A d J 𝑡 A B d d c
7 simpl c J 𝑡 A d J 𝑡 A B d d c c J 𝑡 A
8 7 anim2i J Top A X B A c J 𝑡 A d J 𝑡 A B d d c J Top A X B A c J 𝑡 A
9 simp-5r J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A c J 𝑡 A
10 simp1 J Top A X B A J Top
11 simp2 J Top A X B A A X
12 1 restuni J Top A X A = J 𝑡 A
13 10 11 12 syl2anc J Top A X B A A = J 𝑡 A
14 13 ad5antr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A A = J 𝑡 A
15 9 14 sseqtrrd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A c A
16 11 ad5antr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A A X
17 15 16 sstrd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A c X
18 10 ad5antr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A J Top
19 simplr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e J
20 1 eltopss J Top e J e X
21 18 19 20 syl2anc J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e X
22 21 ssdifssd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e A X
23 17 22 unssd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A c e A X
24 simpr1l J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A B d
25 24 3anassrs J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A B d
26 simpr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A d = e A
27 25 26 sseqtrd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A B e A
28 inss1 e A e
29 27 28 sstrdi J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A B e
30 inundif e A e A = e
31 simpr1r J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A d c
32 31 3anassrs J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A d c
33 26 32 eqsstrrd J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e A c
34 unss1 e A c e A e A c e A
35 33 34 syl J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e A e A c e A
36 30 35 eqsstrrid J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A e c e A
37 sseq2 b = e B b B e
38 sseq1 b = e b c e A e c e A
39 37 38 anbi12d b = e B b b c e A B e e c e A
40 39 rspcev e J B e e c e A b J B b b c e A
41 19 29 36 40 syl12anc J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A b J B b b c e A
42 indir c e A A = c A e A A
43 disjdifr e A A =
44 43 uneq2i c A e A A = c A
45 un0 c A = c A
46 42 44 45 3eqtri c e A A = c A
47 df-ss c A c A = c
48 47 biimpi c A c A = c
49 46 48 eqtr2id c A c = c e A A
50 15 49 syl J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A c = c e A A
51 vex c V
52 vex e V
53 52 difexi e A V
54 51 53 unex c e A V
55 sseq1 a = c e A a X c e A X
56 sseq2 a = c e A b a b c e A
57 56 anbi2d a = c e A B b b a B b b c e A
58 57 rexbidv a = c e A b J B b b a b J B b b c e A
59 55 58 anbi12d a = c e A a X b J B b b a c e A X b J B b b c e A
60 ineq1 a = c e A a A = c e A A
61 60 eqeq2d a = c e A c = a A c = c e A A
62 59 61 anbi12d a = c e A a X b J B b b a c = a A c e A X b J B b b c e A c = c e A A
63 54 62 spcev c e A X b J B b b c e A c = c e A A a a X b J B b b a c = a A
64 23 41 50 63 syl21anc J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A a a X b J B b b a c = a A
65 10 ad3antrrr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c J Top
66 10 uniexd J Top A X B A J V
67 1 66 eqeltrid J Top A X B A X V
68 67 11 ssexd J Top A X B A A V
69 68 ad3antrrr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c A V
70 simplr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c d J 𝑡 A
71 elrest J Top A V d J 𝑡 A e J d = e A
72 71 biimpa J Top A V d J 𝑡 A e J d = e A
73 65 69 70 72 syl21anc J Top A X B A c J 𝑡 A d J 𝑡 A B d d c e J d = e A
74 64 73 r19.29a J Top A X B A c J 𝑡 A d J 𝑡 A B d d c a a X b J B b b a c = a A
75 8 74 sylanl1 J Top A X B A c J 𝑡 A d J 𝑡 A B d d c d J 𝑡 A B d d c a a X b J B b b a c = a A
76 simprr J Top A X B A c J 𝑡 A d J 𝑡 A B d d c d J 𝑡 A B d d c
77 6 75 76 r19.29af J Top A X B A c J 𝑡 A d J 𝑡 A B d d c a a X b J B b b a c = a A
78 inss2 a A A
79 sseq1 c = a A c A a A A
80 78 79 mpbiri c = a A c A
81 80 adantl a X b J B b b a c = a A c A
82 81 exlimiv a a X b J B b b a c = a A c A
83 82 adantl J Top A X B A a a X b J B b b a c = a A c A
84 13 adantr J Top A X B A a a X b J B b b a c = a A A = J 𝑡 A
85 83 84 sseqtrd J Top A X B A a a X b J B b b a c = a A c J 𝑡 A
86 10 ad4antr J Top A X B A c = a A a X b J B b b a J Top
87 68 ad4antr J Top A X B A c = a A a X b J B b b a A V
88 simplr J Top A X B A c = a A a X b J B b b a b J
89 elrestr J Top A V b J b A J 𝑡 A
90 86 87 88 89 syl3anc J Top A X B A c = a A a X b J B b b a b A J 𝑡 A
91 simprl J Top A X B A c = a A a X b J B b b a B b
92 simp3 J Top A X B A B A
93 92 ad4antr J Top A X B A c = a A a X b J B b b a B A
94 91 93 ssind J Top A X B A c = a A a X b J B b b a B b A
95 simprr J Top A X B A c = a A a X b J B b b a b a
96 95 ssrind J Top A X B A c = a A a X b J B b b a b A a A
97 simp-4r J Top A X B A c = a A a X b J B b b a c = a A
98 96 97 sseqtrrd J Top A X B A c = a A a X b J B b b a b A c
99 90 94 98 jca32 J Top A X B A c = a A a X b J B b b a b A J 𝑡 A B b A b A c
100 99 ex J Top A X B A c = a A a X b J B b b a b A J 𝑡 A B b A b A c
101 100 reximdva J Top A X B A c = a A a X b J B b b a b J b A J 𝑡 A B b A b A c
102 101 impr J Top A X B A c = a A a X b J B b b a b J b A J 𝑡 A B b A b A c
103 102 an32s J Top A X B A a X b J B b b a c = a A b J b A J 𝑡 A B b A b A c
104 103 expl J Top A X B A a X b J B b b a c = a A b J b A J 𝑡 A B b A b A c
105 104 exlimdv J Top A X B A a a X b J B b b a c = a A b J b A J 𝑡 A B b A b A c
106 105 imp J Top A X B A a a X b J B b b a c = a A b J b A J 𝑡 A B b A b A c
107 sseq2 d = b A B d B b A
108 sseq1 d = b A d c b A c
109 107 108 anbi12d d = b A B d d c B b A b A c
110 109 rspcev b A J 𝑡 A B b A b A c d J 𝑡 A B d d c
111 110 rexlimivw b J b A J 𝑡 A B b A b A c d J 𝑡 A B d d c
112 106 111 syl J Top A X B A a a X b J B b b a c = a A d J 𝑡 A B d d c
113 85 112 jca J Top A X B A a a X b J B b b a c = a A c J 𝑡 A d J 𝑡 A B d d c
114 77 113 impbida J Top A X B A c J 𝑡 A d J 𝑡 A B d d c a a X b J B b b a c = a A
115 resttop J Top A V J 𝑡 A Top
116 10 68 115 syl2anc J Top A X B A J 𝑡 A Top
117 92 13 sseqtrd J Top A X B A B J 𝑡 A
118 eqid J 𝑡 A = J 𝑡 A
119 118 isnei J 𝑡 A Top B J 𝑡 A c nei J 𝑡 A B c J 𝑡 A d J 𝑡 A B d d c
120 116 117 119 syl2anc J Top A X B A c nei J 𝑡 A B c J 𝑡 A d J 𝑡 A B d d c
121 fvex nei J B V
122 restval nei J B V A V nei J B 𝑡 A = ran a nei J B a A
123 121 68 122 sylancr J Top A X B A nei J B 𝑡 A = ran a nei J B a A
124 123 eleq2d J Top A X B A c nei J B 𝑡 A c ran a nei J B a A
125 92 11 sstrd J Top A X B A B X
126 eqid a nei J B a A = a nei J B a A
127 126 elrnmpt c V c ran a nei J B a A a nei J B c = a A
128 127 elv c ran a nei J B a A a nei J B c = a A
129 df-rex a nei J B c = a A a a nei J B c = a A
130 128 129 bitri c ran a nei J B a A a a nei J B c = a A
131 1 isnei J Top B X a nei J B a X b J B b b a
132 131 anbi1d J Top B X a nei J B c = a A a X b J B b b a c = a A
133 132 exbidv J Top B X a a nei J B c = a A a a X b J B b b a c = a A
134 130 133 syl5bb J Top B X c ran a nei J B a A a a X b J B b b a c = a A
135 10 125 134 syl2anc J Top A X B A c ran a nei J B a A a a X b J B b b a c = a A
136 124 135 bitrd J Top A X B A c nei J B 𝑡 A a a X b J B b b a c = a A
137 114 120 136 3bitr4d J Top A X B A c nei J 𝑡 A B c nei J B 𝑡 A
138 137 eqrdv J Top A X B A nei J 𝑡 A B = nei J B 𝑡 A