Metamath Proof Explorer


Theorem neitx

Description: The Cartesian product of two neighborhoods is a neighborhood in the product topology. (Contributed by Thierry Arnoux, 13-Jan-2018)

Ref Expression
Hypotheses neitx.x X = J
neitx.y Y = K
Assertion neitx J Top K Top A nei J C B nei K D A × B nei J × t K C × D

Proof

Step Hyp Ref Expression
1 neitx.x X = J
2 neitx.y Y = K
3 1 neii1 J Top A nei J C A X
4 3 ad2ant2r J Top K Top A nei J C B nei K D A X
5 2 neii1 K Top B nei K D B Y
6 5 ad2ant2l J Top K Top A nei J C B nei K D B Y
7 xpss12 A X B Y A × B X × Y
8 4 6 7 syl2anc J Top K Top A nei J C B nei K D A × B X × Y
9 1 2 txuni J Top K Top X × Y = J × t K
10 9 adantr J Top K Top A nei J C B nei K D X × Y = J × t K
11 8 10 sseqtrd J Top K Top A nei J C B nei K D A × B J × t K
12 simp-5l J Top K Top A nei J C B nei K D a J C a a A b K D b b B J Top K Top
13 simp-4r J Top K Top A nei J C B nei K D a J C a a A b K D b b B a J
14 simplr J Top K Top A nei J C B nei K D a J C a a A b K D b b B b K
15 txopn J Top K Top a J b K a × b J × t K
16 12 13 14 15 syl12anc J Top K Top A nei J C B nei K D a J C a a A b K D b b B a × b J × t K
17 simpr1l J Top K Top A nei J C B nei K D a J C a a A b K D b b B C a
18 17 3anassrs J Top K Top A nei J C B nei K D a J C a a A b K D b b B C a
19 simprl J Top K Top A nei J C B nei K D a J C a a A b K D b b B D b
20 xpss12 C a D b C × D a × b
21 18 19 20 syl2anc J Top K Top A nei J C B nei K D a J C a a A b K D b b B C × D a × b
22 simpr1r J Top K Top A nei J C B nei K D a J C a a A b K D b b B a A
23 22 3anassrs J Top K Top A nei J C B nei K D a J C a a A b K D b b B a A
24 simprr J Top K Top A nei J C B nei K D a J C a a A b K D b b B b B
25 xpss12 a A b B a × b A × B
26 23 24 25 syl2anc J Top K Top A nei J C B nei K D a J C a a A b K D b b B a × b A × B
27 sseq2 c = a × b C × D c C × D a × b
28 sseq1 c = a × b c A × B a × b A × B
29 27 28 anbi12d c = a × b C × D c c A × B C × D a × b a × b A × B
30 29 rspcev a × b J × t K C × D a × b a × b A × B c J × t K C × D c c A × B
31 16 21 26 30 syl12anc J Top K Top A nei J C B nei K D a J C a a A b K D b b B c J × t K C × D c c A × B
32 neii2 K Top B nei K D b K D b b B
33 32 ad2ant2l J Top K Top A nei J C B nei K D b K D b b B
34 33 ad2antrr J Top K Top A nei J C B nei K D a J C a a A b K D b b B
35 31 34 r19.29a J Top K Top A nei J C B nei K D a J C a a A c J × t K C × D c c A × B
36 neii2 J Top A nei J C a J C a a A
37 36 ad2ant2r J Top K Top A nei J C B nei K D a J C a a A
38 35 37 r19.29a J Top K Top A nei J C B nei K D c J × t K C × D c c A × B
39 txtop J Top K Top J × t K Top
40 39 adantr J Top K Top A nei J C B nei K D J × t K Top
41 1 neiss2 J Top A nei J C C X
42 41 ad2ant2r J Top K Top A nei J C B nei K D C X
43 2 neiss2 K Top B nei K D D Y
44 43 ad2ant2l J Top K Top A nei J C B nei K D D Y
45 xpss12 C X D Y C × D X × Y
46 42 44 45 syl2anc J Top K Top A nei J C B nei K D C × D X × Y
47 46 10 sseqtrd J Top K Top A nei J C B nei K D C × D J × t K
48 eqid J × t K = J × t K
49 48 isnei J × t K Top C × D J × t K A × B nei J × t K C × D A × B J × t K c J × t K C × D c c A × B
50 40 47 49 syl2anc J Top K Top A nei J C B nei K D A × B nei J × t K C × D A × B J × t K c J × t K C × D c c A × B
51 11 38 50 mpbir2and J Top K Top A nei J C B nei K D A × B nei J × t K C × D