Metamath Proof Explorer


Theorem neiuni

Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007) (Revised by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis tpnei.1 X = J
Assertion neiuni J Top S X X = nei J S

Proof

Step Hyp Ref Expression
1 tpnei.1 X = J
2 1 tpnei J Top S X X nei J S
3 2 biimpa J Top S X X nei J S
4 elssuni X nei J S X nei J S
5 3 4 syl J Top S X X nei J S
6 1 neii1 J Top x nei J S x X
7 6 ex J Top x nei J S x X
8 7 adantr J Top S X x nei J S x X
9 8 ralrimiv J Top S X x nei J S x X
10 unissb nei J S X x nei J S x X
11 9 10 sylibr J Top S X nei J S X
12 5 11 eqssd J Top S X X = nei J S