Metamath Proof Explorer


Theorem neldifpr1

Description: The first element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Assertion neldifpr1 ¬ A C A B

Proof

Step Hyp Ref Expression
1 neirr ¬ A A
2 eldifpr A C A B A C A A A B
3 2 simp2bi A C A B A A
4 1 3 mto ¬ A C A B