Metamath Proof Explorer


Theorem neldifpr2

Description: The second element of a pair is not an element of a difference with this pair. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Assertion neldifpr2 ¬ B C A B

Proof

Step Hyp Ref Expression
1 neirr ¬ B B
2 eldifpr B C A B B C B A B B
3 2 simp3bi B C A B B B
4 1 3 mto ¬ B C A B