Metamath Proof Explorer


Theorem neldifsn

Description: The class A is not in ( B \ { A } ) . (Contributed by David Moews, 1-May-2017)

Ref Expression
Assertion neldifsn ¬ A B A

Proof

Step Hyp Ref Expression
1 neirr ¬ A A
2 eldifsni A B A A A
3 1 2 mto ¬ A B A