Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
neldifsn
Next ⟩
neldifsnd
Metamath Proof Explorer
Ascii
Unicode
Theorem
neldifsn
Description:
The class
A
is not in
( B \ { A } )
.
(Contributed by
David Moews
, 1-May-2017)
Ref
Expression
Assertion
neldifsn
⊢
¬
A
∈
B
∖
A
Proof
Step
Hyp
Ref
Expression
1
neirr
⊢
¬
A
≠
A
2
eldifsni
⊢
A
∈
B
∖
A
→
A
≠
A
3
1
2
mto
⊢
¬
A
∈
B
∖
A