Metamath Proof Explorer


Theorem neldifsnd

Description: The class A is not in ( B \ { A } ) . Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Assertion neldifsnd φ ¬ A B A

Proof

Step Hyp Ref Expression
1 neldifsn ¬ A B A
2 1 a1i φ ¬ A B A