Metamath Proof Explorer
Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016) (Proof shortened by Wolf Lammen, 25-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
neleq12d.1 |
|
|
|
neleq12d.2 |
|
|
Assertion |
neleq12d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
neleq12d.1 |
|
2 |
|
neleq12d.2 |
|
3 |
1 2
|
eleq12d |
|
4 |
3
|
notbid |
|
5 |
|
df-nel |
|
6 |
|
df-nel |
|
7 |
4 5 6
|
3bitr4g |
|