Metamath Proof Explorer


Theorem neleq12d

Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypotheses neleq12d.1 φ A = B
neleq12d.2 φ C = D
Assertion neleq12d φ A C B D

Proof

Step Hyp Ref Expression
1 neleq12d.1 φ A = B
2 neleq12d.2 φ C = D
3 1 2 eleq12d φ A C B D
4 3 notbid φ ¬ A C ¬ B D
5 df-nel A C ¬ A C
6 df-nel B D ¬ B D
7 4 5 6 3bitr4g φ A C B D