Metamath Proof Explorer
Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016) (Proof shortened by Wolf Lammen, 25-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
neleq12d.1 |
|
|
|
neleq12d.2 |
|
|
Assertion |
neleq12d |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
neleq12d.1 |
|
| 2 |
|
neleq12d.2 |
|
| 3 |
1 2
|
eleq12d |
|
| 4 |
3
|
notbid |
|
| 5 |
|
df-nel |
|
| 6 |
|
df-nel |
|
| 7 |
4 5 6
|
3bitr4g |
|