Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | neleqtrd.1 | |
|
| neleqtrd.2 | |
||
| Assertion | neleqtrd | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleqtrd.1 | |
|
| 2 | neleqtrd.2 | |
|
| 3 | 2 | eleq2d | |
| 4 | 1 3 | mtbid | |