Metamath Proof Explorer


Theorem nelfzo

Description: An integer not being a member of a half-open finite set of integers. (Contributed by AV, 29-Apr-2020)

Ref Expression
Assertion nelfzo K M N K M ..^ N K < M N K

Proof

Step Hyp Ref Expression
1 df-nel K M ..^ N ¬ K M ..^ N
2 ianor ¬ M K K < N ¬ M K ¬ K < N
3 2 a1i K M N ¬ M K K < N ¬ M K ¬ K < N
4 elfzo K M N K M ..^ N M K K < N
5 4 notbid K M N ¬ K M ..^ N ¬ M K K < N
6 zre K K
7 zre M M
8 6 7 anim12i K M K M
9 8 3adant3 K M N K M
10 ltnle K M K < M ¬ M K
11 9 10 syl K M N K < M ¬ M K
12 zre N N
13 6 12 anim12ci K N N K
14 13 3adant2 K M N N K
15 lenlt N K N K ¬ K < N
16 14 15 syl K M N N K ¬ K < N
17 11 16 orbi12d K M N K < M N K ¬ M K ¬ K < N
18 3 5 17 3bitr4d K M N ¬ K M ..^ N K < M N K
19 1 18 syl5bb K M N K M ..^ N K < M N K