Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class membership
nelneq
Next ⟩
nelneq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
nelneq
Description:
A way of showing two classes are not equal.
(Contributed by
NM
, 1-Apr-1997)
Ref
Expression
Assertion
nelneq
⊢
A
∈
C
∧
¬
B
∈
C
→
¬
A
=
B
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
A
=
B
→
A
∈
C
↔
B
∈
C
2
1
biimpcd
⊢
A
∈
C
→
A
=
B
→
B
∈
C
3
2
con3dimp
⊢
A
∈
C
∧
¬
B
∈
C
→
¬
A
=
B