Metamath Proof Explorer


Theorem nelneq

Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997)

Ref Expression
Assertion nelneq A C ¬ B C ¬ A = B

Proof

Step Hyp Ref Expression
1 eleq1 A = B A C B C
2 1 biimpcd A C A = B B C
3 2 con3dimp A C ¬ B C ¬ A = B