Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class membership
nelneq2
Next ⟩
eqsb1
Metamath Proof Explorer
Ascii
Unicode
Theorem
nelneq2
Description:
A way of showing two classes are not equal.
(Contributed by
NM
, 12-Jan-2002)
Ref
Expression
Assertion
nelneq2
⊢
A
∈
B
∧
¬
A
∈
C
→
¬
B
=
C
Proof
Step
Hyp
Ref
Expression
1
eleq2
⊢
B
=
C
→
A
∈
B
↔
A
∈
C
2
1
biimpcd
⊢
A
∈
B
→
B
=
C
→
A
∈
C
3
2
con3dimp
⊢
A
∈
B
∧
¬
A
∈
C
→
¬
B
=
C