Metamath Proof Explorer


Theorem nelpr2

Description: If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses nelpr2.a φ A V
nelpr2.n φ ¬ A B C
Assertion nelpr2 φ A C

Proof

Step Hyp Ref Expression
1 nelpr2.a φ A V
2 nelpr2.n φ ¬ A B C
3 animorr φ A = C A = B A = C
4 elprg A V A B C A = B A = C
5 1 4 syl φ A B C A = B A = C
6 5 adantr φ A = C A B C A = B A = C
7 3 6 mpbird φ A = C A B C
8 2 7 mtand φ ¬ A = C
9 8 neqned φ A C