Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
nelprd
Metamath Proof Explorer
Description: If an element doesn't match the items in an unordered pair, it is not in
the unordered pair, deduction version. (Contributed by Alexander van
der Vekens , 25-Jan-2018)
Ref
Expression
Hypotheses
nelprd.1
⊢ φ → A ≠ B
nelprd.2
⊢ φ → A ≠ C
Assertion
nelprd
⊢ φ → ¬ A ∈ B C
Proof
Step
Hyp
Ref
Expression
1
nelprd.1
⊢ φ → A ≠ B
2
nelprd.2
⊢ φ → A ≠ C
3
neanior
⊢ A ≠ B ∧ A ≠ C ↔ ¬ A = B ∨ A = C
4
elpri
⊢ A ∈ B C → A = B ∨ A = C
5
4
con3i
⊢ ¬ A = B ∨ A = C → ¬ A ∈ B C
6
3 5
sylbi
⊢ A ≠ B ∧ A ≠ C → ¬ A ∈ B C
7
1 2 6
syl2anc
⊢ φ → ¬ A ∈ B C