Metamath Proof Explorer


Theorem nelpri

Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Hypotheses nelpri.1 A B
nelpri.2 A C
Assertion nelpri ¬ A B C

Proof

Step Hyp Ref Expression
1 nelpri.1 A B
2 nelpri.2 A C
3 neanior A B A C ¬ A = B A = C
4 elpri A B C A = B A = C
5 4 con3i ¬ A = B A = C ¬ A B C
6 3 5 sylbi A B A C ¬ A B C
7 1 2 6 mp2an ¬ A B C