Metamath Proof Explorer


Theorem nelrdva

Description: Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017)

Ref Expression
Hypothesis nelrdva.1 φ x A x B
Assertion nelrdva φ ¬ B A

Proof

Step Hyp Ref Expression
1 nelrdva.1 φ x A x B
2 eqidd φ B A B = B
3 eleq1 x = B x A B A
4 3 anbi2d x = B φ x A φ B A
5 neeq1 x = B x B B B
6 4 5 imbi12d x = B φ x A x B φ B A B B
7 6 1 vtoclg B A φ B A B B
8 7 anabsi7 φ B A B B
9 8 neneqd φ B A ¬ B = B
10 2 9 pm2.65da φ ¬ B A