Metamath Proof Explorer


Theorem nelrnmpt

Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses nelrnmpt.x x φ
nelrnmpt.f F = x A B
nelrnmpt.c φ C V
nelrnmpt.n φ x A C B
Assertion nelrnmpt φ ¬ C ran F

Proof

Step Hyp Ref Expression
1 nelrnmpt.x x φ
2 nelrnmpt.f F = x A B
3 nelrnmpt.c φ C V
4 nelrnmpt.n φ x A C B
5 4 neneqd φ x A ¬ C = B
6 5 ex φ x A ¬ C = B
7 1 6 ralrimi φ x A ¬ C = B
8 ralnex x A ¬ C = B ¬ x A C = B
9 7 8 sylib φ ¬ x A C = B
10 2 elrnmpt C V C ran F x A C = B
11 3 10 syl φ C ran F x A C = B
12 9 11 mtbird φ ¬ C ran F