Metamath Proof Explorer


Theorem nemnftgtmnft

Description: An extended real that is not minus infinity, is larger than minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion nemnftgtmnft A * A −∞ −∞ < A

Proof

Step Hyp Ref Expression
1 simpr A * A −∞ A −∞
2 1 neneqd A * A −∞ ¬ A = −∞
3 ngtmnft A * A = −∞ ¬ −∞ < A
4 3 adantr A * A −∞ A = −∞ ¬ −∞ < A
5 2 4 mtbid A * A −∞ ¬ ¬ −∞ < A
6 notnotb −∞ < A ¬ ¬ −∞ < A
7 5 6 sylibr A * A −∞ −∞ < A