Metamath Proof Explorer


Theorem newbday

Description: A surreal is an element of a new set iff its birthday is equal to that ordinal. Remark in Conway p. 29. (Contributed by Scott Fenton, 19-Aug-2024)

Ref Expression
Assertion newbday Could not format assertion : No typesetting found for |- ( ( A e. On /\ X e. No ) -> ( X e. ( _New ` A ) <-> ( bday ` X ) = A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 madebday Could not format ( ( A e. On /\ X e. No ) -> ( X e. ( _Made ` A ) <-> ( bday ` X ) C_ A ) ) : No typesetting found for |- ( ( A e. On /\ X e. No ) -> ( X e. ( _Made ` A ) <-> ( bday ` X ) C_ A ) ) with typecode |-
2 oldbday A On X No X Old A bday X A
3 2 notbid A On X No ¬ X Old A ¬ bday X A
4 1 3 anbi12d Could not format ( ( A e. On /\ X e. No ) -> ( ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) <-> ( ( bday ` X ) C_ A /\ -. ( bday ` X ) e. A ) ) ) : No typesetting found for |- ( ( A e. On /\ X e. No ) -> ( ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) <-> ( ( bday ` X ) C_ A /\ -. ( bday ` X ) e. A ) ) ) with typecode |-
5 newval Could not format ( _New ` A ) = ( ( _Made ` A ) \ ( _Old ` A ) ) : No typesetting found for |- ( _New ` A ) = ( ( _Made ` A ) \ ( _Old ` A ) ) with typecode |-
6 5 a1i Could not format ( A e. On -> ( _New ` A ) = ( ( _Made ` A ) \ ( _Old ` A ) ) ) : No typesetting found for |- ( A e. On -> ( _New ` A ) = ( ( _Made ` A ) \ ( _Old ` A ) ) ) with typecode |-
7 6 eleq2d Could not format ( A e. On -> ( X e. ( _New ` A ) <-> X e. ( ( _Made ` A ) \ ( _Old ` A ) ) ) ) : No typesetting found for |- ( A e. On -> ( X e. ( _New ` A ) <-> X e. ( ( _Made ` A ) \ ( _Old ` A ) ) ) ) with typecode |-
8 eldif Could not format ( X e. ( ( _Made ` A ) \ ( _Old ` A ) ) <-> ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) ) : No typesetting found for |- ( X e. ( ( _Made ` A ) \ ( _Old ` A ) ) <-> ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) ) with typecode |-
9 7 8 bitrdi Could not format ( A e. On -> ( X e. ( _New ` A ) <-> ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) ) ) : No typesetting found for |- ( A e. On -> ( X e. ( _New ` A ) <-> ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) ) ) with typecode |-
10 9 adantr Could not format ( ( A e. On /\ X e. No ) -> ( X e. ( _New ` A ) <-> ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) ) ) : No typesetting found for |- ( ( A e. On /\ X e. No ) -> ( X e. ( _New ` A ) <-> ( X e. ( _Made ` A ) /\ -. X e. ( _Old ` A ) ) ) ) with typecode |-
11 bdayelon bday X On
12 11 onordi Ord bday X
13 eloni A On Ord A
14 ordtri4 Ord bday X Ord A bday X = A bday X A ¬ bday X A
15 12 13 14 sylancr A On bday X = A bday X A ¬ bday X A
16 15 adantr A On X No bday X = A bday X A ¬ bday X A
17 4 10 16 3bitr4d Could not format ( ( A e. On /\ X e. No ) -> ( X e. ( _New ` A ) <-> ( bday ` X ) = A ) ) : No typesetting found for |- ( ( A e. On /\ X e. No ) -> ( X e. ( _New ` A ) <-> ( bday ` X ) = A ) ) with typecode |-