Metamath Proof Explorer


Theorem nexd

Description: Deduction for generalization rule for negated wff. (Contributed by Mario Carneiro, 24-Sep-2016)

Ref Expression
Hypotheses nexd.1 x φ
nexd.2 φ ¬ ψ
Assertion nexd φ ¬ x ψ

Proof

Step Hyp Ref Expression
1 nexd.1 x φ
2 nexd.2 φ ¬ ψ
3 1 nf5ri φ x φ
4 3 2 nexdh φ ¬ x ψ