Metamath Proof Explorer


Theorem nexdh

Description: Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002)

Ref Expression
Hypotheses nexdh.1 φ x φ
nexdh.2 φ ¬ ψ
Assertion nexdh φ ¬ x ψ

Proof

Step Hyp Ref Expression
1 nexdh.1 φ x φ
2 nexdh.2 φ ¬ ψ
3 1 2 alrimih φ x ¬ ψ
4 alnex x ¬ ψ ¬ x ψ
5 3 4 sylib φ ¬ x ψ