Metamath Proof Explorer


Theorem nexmo

Description: Nonexistence implies uniqueness. (Contributed by BJ, 30-Sep-2022) Avoid ax-11 . (Revised by Wolf Lammen, 16-Oct-2022)

Ref Expression
Assertion nexmo ¬ x φ * x φ

Proof

Step Hyp Ref Expression
1 pm2.21 ¬ φ φ x = y
2 1 alimi x ¬ φ x φ x = y
3 2 alrimiv x ¬ φ y x φ x = y
4 3 19.2d x ¬ φ y x φ x = y
5 alnex x ¬ φ ¬ x φ
6 5 bicomi ¬ x φ x ¬ φ
7 df-mo * x φ y x φ x = y
8 4 6 7 3imtr4i ¬ x φ * x φ