Metamath Proof Explorer


Theorem nexple

Description: A lower bound for an exponentiation. (Contributed by Thierry Arnoux, 19-Aug-2017)

Ref Expression
Assertion nexple A 0 B 2 B A B A

Proof

Step Hyp Ref Expression
1 simpr A 0 B 2 B A A
2 simpl2 A 0 B 2 B A B
3 simpl3 A 0 B 2 B A 2 B
4 id k = 1 k = 1
5 oveq2 k = 1 B k = B 1
6 4 5 breq12d k = 1 k B k 1 B 1
7 6 imbi2d k = 1 B 2 B k B k B 2 B 1 B 1
8 id k = n k = n
9 oveq2 k = n B k = B n
10 8 9 breq12d k = n k B k n B n
11 10 imbi2d k = n B 2 B k B k B 2 B n B n
12 id k = n + 1 k = n + 1
13 oveq2 k = n + 1 B k = B n + 1
14 12 13 breq12d k = n + 1 k B k n + 1 B n + 1
15 14 imbi2d k = n + 1 B 2 B k B k B 2 B n + 1 B n + 1
16 id k = A k = A
17 oveq2 k = A B k = B A
18 16 17 breq12d k = A k B k A B A
19 18 imbi2d k = A B 2 B k B k B 2 B A B A
20 simpl B 2 B B
21 1nn0 1 0
22 21 a1i B 2 B 1 0
23 1red B 2 B 1
24 2re 2
25 24 a1i B 2 B 2
26 1le2 1 2
27 26 a1i B 2 B 1 2
28 simpr B 2 B 2 B
29 23 25 20 27 28 letrd B 2 B 1 B
30 20 22 29 expge1d B 2 B 1 B 1
31 simp1 n B 2 B n B n n
32 31 nnnn0d n B 2 B n B n n 0
33 32 nn0red n B 2 B n B n n
34 1red n B 2 B n B n 1
35 33 34 readdcld n B 2 B n B n n + 1
36 20 3ad2ant2 n B 2 B n B n B
37 33 36 remulcld n B 2 B n B n n B
38 36 32 reexpcld n B 2 B n B n B n
39 38 36 remulcld n B 2 B n B n B n B
40 24 a1i n B 2 B n B n 2
41 33 40 remulcld n B 2 B n B n n 2
42 31 nnge1d n B 2 B n B n 1 n
43 34 33 33 42 leadd2dd n B 2 B n B n n + 1 n + n
44 33 recnd n B 2 B n B n n
45 44 times2d n B 2 B n B n n 2 = n + n
46 43 45 breqtrrd n B 2 B n B n n + 1 n 2
47 32 nn0ge0d n B 2 B n B n 0 n
48 simp2r n B 2 B n B n 2 B
49 40 36 33 47 48 lemul2ad n B 2 B n B n n 2 n B
50 35 41 37 46 49 letrd n B 2 B n B n n + 1 n B
51 0red B 2 B 0
52 0le2 0 2
53 52 a1i B 2 B 0 2
54 51 25 20 53 28 letrd B 2 B 0 B
55 54 3ad2ant2 n B 2 B n B n 0 B
56 simp3 n B 2 B n B n n B n
57 33 38 36 55 56 lemul1ad n B 2 B n B n n B B n B
58 35 37 39 50 57 letrd n B 2 B n B n n + 1 B n B
59 36 recnd n B 2 B n B n B
60 59 32 expp1d n B 2 B n B n B n + 1 = B n B
61 58 60 breqtrrd n B 2 B n B n n + 1 B n + 1
62 61 3exp n B 2 B n B n n + 1 B n + 1
63 62 a2d n B 2 B n B n B 2 B n + 1 B n + 1
64 7 11 15 19 30 63 nnind A B 2 B A B A
65 64 3impib A B 2 B A B A
66 1 2 3 65 syl3anc A 0 B 2 B A A B A
67 0le1 0 1
68 67 a1i A 0 B 2 B A = 0 0 1
69 simpr A 0 B 2 B A = 0 A = 0
70 69 oveq2d A 0 B 2 B A = 0 B A = B 0
71 simpl2 A 0 B 2 B A = 0 B
72 71 recnd A 0 B 2 B A = 0 B
73 72 exp0d A 0 B 2 B A = 0 B 0 = 1
74 70 73 eqtrd A 0 B 2 B A = 0 B A = 1
75 68 69 74 3brtr4d A 0 B 2 B A = 0 A B A
76 elnn0 A 0 A A = 0
77 76 biimpi A 0 A A = 0
78 77 3ad2ant1 A 0 B 2 B A A = 0
79 66 75 78 mpjaodan A 0 B 2 B A B A