Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
simpl2 |
|
3 |
|
simpl3 |
|
4 |
|
id |
|
5 |
|
oveq2 |
|
6 |
4 5
|
breq12d |
|
7 |
6
|
imbi2d |
|
8 |
|
id |
|
9 |
|
oveq2 |
|
10 |
8 9
|
breq12d |
|
11 |
10
|
imbi2d |
|
12 |
|
id |
|
13 |
|
oveq2 |
|
14 |
12 13
|
breq12d |
|
15 |
14
|
imbi2d |
|
16 |
|
id |
|
17 |
|
oveq2 |
|
18 |
16 17
|
breq12d |
|
19 |
18
|
imbi2d |
|
20 |
|
simpl |
|
21 |
|
1nn0 |
|
22 |
21
|
a1i |
|
23 |
|
1red |
|
24 |
|
2re |
|
25 |
24
|
a1i |
|
26 |
|
1le2 |
|
27 |
26
|
a1i |
|
28 |
|
simpr |
|
29 |
23 25 20 27 28
|
letrd |
|
30 |
20 22 29
|
expge1d |
|
31 |
|
simp1 |
|
32 |
31
|
nnnn0d |
|
33 |
32
|
nn0red |
|
34 |
|
1red |
|
35 |
33 34
|
readdcld |
|
36 |
20
|
3ad2ant2 |
|
37 |
33 36
|
remulcld |
|
38 |
36 32
|
reexpcld |
|
39 |
38 36
|
remulcld |
|
40 |
24
|
a1i |
|
41 |
33 40
|
remulcld |
|
42 |
31
|
nnge1d |
|
43 |
34 33 33 42
|
leadd2dd |
|
44 |
33
|
recnd |
|
45 |
44
|
times2d |
|
46 |
43 45
|
breqtrrd |
|
47 |
32
|
nn0ge0d |
|
48 |
|
simp2r |
|
49 |
40 36 33 47 48
|
lemul2ad |
|
50 |
35 41 37 46 49
|
letrd |
|
51 |
|
0red |
|
52 |
|
0le2 |
|
53 |
52
|
a1i |
|
54 |
51 25 20 53 28
|
letrd |
|
55 |
54
|
3ad2ant2 |
|
56 |
|
simp3 |
|
57 |
33 38 36 55 56
|
lemul1ad |
|
58 |
35 37 39 50 57
|
letrd |
|
59 |
36
|
recnd |
|
60 |
59 32
|
expp1d |
|
61 |
58 60
|
breqtrrd |
|
62 |
61
|
3exp |
|
63 |
62
|
a2d |
|
64 |
7 11 15 19 30 63
|
nnind |
|
65 |
64
|
3impib |
|
66 |
1 2 3 65
|
syl3anc |
|
67 |
|
0le1 |
|
68 |
67
|
a1i |
|
69 |
|
simpr |
|
70 |
69
|
oveq2d |
|
71 |
|
simpl2 |
|
72 |
71
|
recnd |
|
73 |
72
|
exp0d |
|
74 |
70 73
|
eqtrd |
|
75 |
68 69 74
|
3brtr4d |
|
76 |
|
elnn0 |
|
77 |
76
|
biimpi |
|
78 |
77
|
3ad2ant1 |
|
79 |
66 75 78
|
mpjaodan |
|