Metamath Proof Explorer


Theorem nf1oconst

Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024)

Ref Expression
Assertion nf1oconst F : A B X A Y A X Y ¬ F : A 1-1 onto C

Proof

Step Hyp Ref Expression
1 nf1const F : A B X A Y A X Y ¬ F : A 1-1 C
2 1 orcd F : A B X A Y A X Y ¬ F : A 1-1 C ¬ F : A onto C
3 ianor ¬ F : A 1-1 C F : A onto C ¬ F : A 1-1 C ¬ F : A onto C
4 df-f1o F : A 1-1 onto C F : A 1-1 C F : A onto C
5 3 4 xchnxbir ¬ F : A 1-1 onto C ¬ F : A 1-1 C ¬ F : A onto C
6 2 5 sylibr F : A B X A Y A X Y ¬ F : A 1-1 onto C