Metamath Proof Explorer


Theorem nf3or

Description: If x is not free in ph , ps , and ch , then it is not free in ( ph \/ ps \/ ch ) . (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses nf.1 x φ
nf.2 x ψ
nf.3 x χ
Assertion nf3or x φ ψ χ

Proof

Step Hyp Ref Expression
1 nf.1 x φ
2 nf.2 x ψ
3 nf.3 x χ
4 df-3or φ ψ χ φ ψ χ
5 1 2 nfor x φ ψ
6 5 3 nfor x φ ψ χ
7 4 6 nfxfr x φ ψ χ