Metamath Proof Explorer


Theorem nf5dh

Description: Deduce that x is not free in ps in a context. (Contributed by Mario Carneiro, 24-Sep-2016) df-nf changed. (Revised by Wolf Lammen, 11-Oct-2021)

Ref Expression
Hypotheses nf5dh.1 φ x φ
nf5dh.2 φ ψ x ψ
Assertion nf5dh φ x ψ

Proof

Step Hyp Ref Expression
1 nf5dh.1 φ x φ
2 nf5dh.2 φ ψ x ψ
3 1 2 alrimih φ x ψ x ψ
4 nf5-1 x ψ x ψ x ψ
5 3 4 syl φ x ψ