Metamath Proof Explorer


Theorem nf5r

Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016) df-nf changed. (Revised by Wolf Lammen, 11-Sep-2021) (Proof shortened by Wolf Lammen, 23-Nov-2023)

Ref Expression
Assertion nf5r x φ φ x φ

Proof

Step Hyp Ref Expression
1 19.8a φ x φ
2 id x φ x φ
3 2 nfrd x φ x φ x φ
4 1 3 syl5 x φ φ x φ