Metamath Proof Explorer


Theorem nfabd

Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfabdw when possible. (Contributed by Mario Carneiro, 8-Oct-2016) Avoid ax-9 and ax-ext . (Revised by Wolf Lammen, 23-May-2023) (New usage is discouraged.)

Ref Expression
Hypotheses nfabd.1 y φ
nfabd.2 φ x ψ
Assertion nfabd φ _ x y | ψ

Proof

Step Hyp Ref Expression
1 nfabd.1 y φ
2 nfabd.2 φ x ψ
3 nfv z φ
4 df-clab z y | ψ z y ψ
5 1 2 nfsbd φ x z y ψ
6 4 5 nfxfrd φ x z y | ψ
7 3 6 nfcd φ _ x y | ψ