Metamath Proof Explorer


Theorem nfabd2

Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (Proof shortened by Wolf Lammen, 10-May-2023) (New usage is discouraged.)

Ref Expression
Hypotheses nfabd2.1 y φ
nfabd2.2 φ ¬ x x = y x ψ
Assertion nfabd2 φ _ x y | ψ

Proof

Step Hyp Ref Expression
1 nfabd2.1 y φ
2 nfabd2.2 φ ¬ x x = y x ψ
3 nfnae y ¬ x x = y
4 1 3 nfan y φ ¬ x x = y
5 4 2 nfabd φ ¬ x x = y _ x y | ψ
6 5 ex φ ¬ x x = y _ x y | ψ
7 nfab1 _ y y | ψ
8 eqidd x x = y y | ψ = y | ψ
9 8 drnfc1 x x = y _ x y | ψ _ y y | ψ
10 7 9 mpbiri x x = y _ x y | ψ
11 6 10 pm2.61d2 φ _ x y | ψ