Metamath Proof Explorer


Theorem nfabdw

Description: Bound-variable hypothesis builder for a class abstraction. Version of nfabd with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (Revised by Gino Giotto, 10-Jan-2024) (Proof shortened by Wolf Lammen, 23-Sep-2024)

Ref Expression
Hypotheses nfabdw.1 y φ
nfabdw.2 φ x ψ
Assertion nfabdw φ _ x y | ψ

Proof

Step Hyp Ref Expression
1 nfabdw.1 y φ
2 nfabdw.2 φ x ψ
3 nfv z φ
4 df-clab z y | ψ z y ψ
5 sb6 z y ψ y y = z ψ
6 4 5 bitri z y | ψ y y = z ψ
7 nfvd φ x y = z
8 7 2 nfimd φ x y = z ψ
9 1 8 nfald φ x y y = z ψ
10 6 9 nfxfrd φ x z y | ψ
11 3 10 nfcd φ _ x y | ψ