Metamath Proof Explorer


Theorem nfald2

Description: Variation on nfald which adds the hypothesis that x and y are distinct in the inner subproof. Usage of this theorem is discouraged because it depends on ax-13 . Check out nfald for a version requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfald2.1 y φ
nfald2.2 φ ¬ x x = y x ψ
Assertion nfald2 φ x y ψ

Proof

Step Hyp Ref Expression
1 nfald2.1 y φ
2 nfald2.2 φ ¬ x x = y x ψ
3 nfnae y ¬ x x = y
4 1 3 nfan y φ ¬ x x = y
5 4 2 nfald φ ¬ x x = y x y ψ
6 5 ex φ ¬ x x = y x y ψ
7 nfa1 y y ψ
8 biidd x x = y y ψ y ψ
9 8 drnf1 x x = y x y ψ y y ψ
10 7 9 mpbiri x x = y x y ψ
11 6 10 pm2.61d2 φ x y ψ