Metamath Proof Explorer


Theorem nfan1

Description: A closed form of nfan . (Contributed by Mario Carneiro, 3-Oct-2016) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021) (Proof shortened by Wolf Lammen, 7-Jul-2022)

Ref Expression
Hypotheses nfim1.1 x φ
nfim1.2 φ x ψ
Assertion nfan1 x φ ψ

Proof

Step Hyp Ref Expression
1 nfim1.1 x φ
2 nfim1.2 φ x ψ
3 df-an φ ψ ¬ φ ¬ ψ
4 2 nfnd φ x ¬ ψ
5 1 4 nfim1 x φ ¬ ψ
6 5 nfn x ¬ φ ¬ ψ
7 3 6 nfxfr x φ ψ