Metamath Proof Explorer


Theorem nfbidf

Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021)

Ref Expression
Hypotheses albid.1 x φ
albid.2 φ ψ χ
Assertion nfbidf φ x ψ x χ

Proof

Step Hyp Ref Expression
1 albid.1 x φ
2 albid.2 φ ψ χ
3 1 2 exbid φ x ψ x χ
4 1 2 albid φ x ψ x χ
5 3 4 imbi12d φ x ψ x ψ x χ x χ
6 df-nf x ψ x ψ x ψ
7 df-nf x χ x χ x χ
8 5 6 7 3bitr4g φ x ψ x χ