Metamath Proof Explorer


Theorem nfbiit

Description: Equivalence theorem for the nonfreeness predicate. Closed form of nfbii . (Contributed by Giovanni Mascellani, 10-Apr-2018) Reduce axiom usage. (Revised by BJ, 6-May-2019)

Ref Expression
Assertion nfbiit x φ ψ x φ x ψ

Proof

Step Hyp Ref Expression
1 exbi x φ ψ x φ x ψ
2 albi x φ ψ x φ x ψ
3 1 2 imbi12d x φ ψ x φ x φ x ψ x ψ
4 df-nf x φ x φ x φ
5 df-nf x ψ x ψ x ψ
6 3 4 5 3bitr4g x φ ψ x φ x ψ