Metamath Proof Explorer


Theorem nfceqdfOLD

Description: Obsolete version of nfceqdf as of 23-Aug-2024. (Contributed by Mario Carneiro, 14-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nfceqdf.1 x φ
nfceqdf.2 φ A = B
Assertion nfceqdfOLD φ _ x A _ x B

Proof

Step Hyp Ref Expression
1 nfceqdf.1 x φ
2 nfceqdf.2 φ A = B
3 2 eleq2d φ y A y B
4 1 3 nfbidf φ x y A x y B
5 4 albidv φ y x y A y x y B
6 df-nfc _ x A y x y A
7 df-nfc _ x B y x y B
8 5 6 7 3bitr4g φ _ x A _ x B