Metamath Proof Explorer


Theorem nfceqi

Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 16-Nov-2019) Avoid ax-12 . (Revised by Wolf Lammen, 19-Jun-2023)

Ref Expression
Hypothesis nfceqi.1 A = B
Assertion nfceqi _ x A _ x B

Proof

Step Hyp Ref Expression
1 nfceqi.1 A = B
2 1 eleq2i y A y B
3 2 nfbii x y A x y B
4 3 albii y x y A y x y B
5 df-nfc _ x A y x y A
6 df-nfc _ x B y x y B
7 4 5 6 3bitr4i _ x A _ x B