Metamath Proof Explorer


Theorem nfco

Description: Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999)

Ref Expression
Hypotheses nfco.1 _ x A
nfco.2 _ x B
Assertion nfco _ x A B

Proof

Step Hyp Ref Expression
1 nfco.1 _ x A
2 nfco.2 _ x B
3 df-co A B = y z | w y B w w A z
4 nfcv _ x y
5 nfcv _ x w
6 4 2 5 nfbr x y B w
7 nfcv _ x z
8 5 1 7 nfbr x w A z
9 6 8 nfan x y B w w A z
10 9 nfex x w y B w w A z
11 10 nfopab _ x y z | w y B w w A z
12 3 11 nfcxfr _ x A B