Metamath Proof Explorer


Theorem nfcprod

Description: Bound-variable hypothesis builder for product: if x is (effectively) not free in A and B , it is not free in prod_ k e. A B . (Contributed by Scott Fenton, 1-Dec-2017)

Ref Expression
Hypotheses nfcprod.1 _ x A
nfcprod.2 _ x B
Assertion nfcprod _ x k A B

Proof

Step Hyp Ref Expression
1 nfcprod.1 _ x A
2 nfcprod.2 _ x B
3 df-prod k A B = ι y | m A m n m z z 0 seq n × k if k A B 1 z seq m × k if k A B 1 y m f f : 1 m 1-1 onto A y = seq 1 × n f n / k B m
4 nfcv _ x
5 nfcv _ x m
6 1 5 nfss x A m
7 nfv x z 0
8 nfcv _ x n
9 nfcv _ x ×
10 1 nfcri x k A
11 nfcv _ x 1
12 10 2 11 nfif _ x if k A B 1
13 4 12 nfmpt _ x k if k A B 1
14 8 9 13 nfseq _ x seq n × k if k A B 1
15 nfcv _ x
16 nfcv _ x z
17 14 15 16 nfbr x seq n × k if k A B 1 z
18 7 17 nfan x z 0 seq n × k if k A B 1 z
19 18 nfex x z z 0 seq n × k if k A B 1 z
20 5 19 nfrex x n m z z 0 seq n × k if k A B 1 z
21 nfcv _ x m
22 21 9 13 nfseq _ x seq m × k if k A B 1
23 nfcv _ x y
24 22 15 23 nfbr x seq m × k if k A B 1 y
25 6 20 24 nf3an x A m n m z z 0 seq n × k if k A B 1 z seq m × k if k A B 1 y
26 4 25 nfrex x m A m n m z z 0 seq n × k if k A B 1 z seq m × k if k A B 1 y
27 nfcv _ x
28 nfcv _ x f
29 nfcv _ x 1 m
30 28 29 1 nff1o x f : 1 m 1-1 onto A
31 nfcv _ x f n
32 31 2 nfcsbw _ x f n / k B
33 27 32 nfmpt _ x n f n / k B
34 11 9 33 nfseq _ x seq 1 × n f n / k B
35 34 21 nffv _ x seq 1 × n f n / k B m
36 35 nfeq2 x y = seq 1 × n f n / k B m
37 30 36 nfan x f : 1 m 1-1 onto A y = seq 1 × n f n / k B m
38 37 nfex x f f : 1 m 1-1 onto A y = seq 1 × n f n / k B m
39 27 38 nfrex x m f f : 1 m 1-1 onto A y = seq 1 × n f n / k B m
40 26 39 nfor x m A m n m z z 0 seq n × k if k A B 1 z seq m × k if k A B 1 y m f f : 1 m 1-1 onto A y = seq 1 × n f n / k B m
41 40 nfiotaw _ x ι y | m A m n m z z 0 seq n × k if k A B 1 z seq m × k if k A B 1 y m f f : 1 m 1-1 onto A y = seq 1 × n f n / k B m
42 3 41 nfcxfr _ x k A B