Metamath Proof Explorer


Theorem nfcprod1

Description: Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypothesis nfcprod1.1 _ k A
Assertion nfcprod1 _ k k A B

Proof

Step Hyp Ref Expression
1 nfcprod1.1 _ k A
2 df-prod k A B = ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
3 nfcv _ k
4 nfcv _ k m
5 1 4 nfss k A m
6 nfv k y 0
7 nfcv _ k n
8 nfcv _ k ×
9 nfmpt1 _ k k if k A B 1
10 7 8 9 nfseq _ k seq n × k if k A B 1
11 nfcv _ k
12 nfcv _ k y
13 10 11 12 nfbr k seq n × k if k A B 1 y
14 6 13 nfan k y 0 seq n × k if k A B 1 y
15 14 nfex k y y 0 seq n × k if k A B 1 y
16 4 15 nfrex k n m y y 0 seq n × k if k A B 1 y
17 nfcv _ k m
18 17 8 9 nfseq _ k seq m × k if k A B 1
19 nfcv _ k x
20 18 11 19 nfbr k seq m × k if k A B 1 x
21 5 16 20 nf3an k A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x
22 3 21 nfrex k m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x
23 nfcv _ k
24 nfcv _ k f
25 nfcv _ k 1 m
26 24 25 1 nff1o k f : 1 m 1-1 onto A
27 nfcv _ k 1
28 nfcsb1v _ k f n / k B
29 23 28 nfmpt _ k n f n / k B
30 27 8 29 nfseq _ k seq 1 × n f n / k B
31 30 17 nffv _ k seq 1 × n f n / k B m
32 31 nfeq2 k x = seq 1 × n f n / k B m
33 26 32 nfan k f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
34 33 nfex k f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
35 23 34 nfrex k m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
36 22 35 nfor k m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
37 36 nfiotaw _ k ι x | m A m n m y y 0 seq n × k if k A B 1 y seq m × k if k A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k B m
38 2 37 nfcxfr _ k k A B