Metamath Proof Explorer


Theorem nfcr

Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016) Drop ax-12 but use ax-8 , df-clel , and avoid a DV condition on y , A . (Revised by SN, 3-Jun-2024)

Ref Expression
Assertion nfcr _ x A x y A

Proof

Step Hyp Ref Expression
1 df-nfc _ x A z x z A
2 eleq1w z = y z A y A
3 2 nfbidv z = y x z A x y A
4 3 spvv z x z A x y A
5 1 4 sylbi _ x A x y A