Metamath Proof Explorer


Theorem nfcriOLD

Description: Obsolete version of nfcri as of 3-Jun-2024. (Contributed by Mario Carneiro, 11-Aug-2016) Avoid ax-10 , ax-11 . (Revised by Gino Giotto, 23-May-2024) Avoid ax-12 . (Revised by SN, 26-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis nfcrii.1 _ x A
Assertion nfcriOLD x y A

Proof

Step Hyp Ref Expression
1 nfcrii.1 _ x A
2 eleq1w z = y z A y A
3 2 nfbidv z = y x z A x y A
4 df-nfc _ x A z x z A
5 4 biimpi _ x A z x z A
6 df-nf x z A x z A x z A
7 6 albii z x z A z x z A x z A
8 eleq1w z = w z A w A
9 8 exbidv z = w x z A x w A
10 8 albidv z = w x z A x w A
11 9 10 imbi12d z = w x z A x z A x w A x w A
12 11 spw z x z A x z A x z A x z A
13 7 12 sylbi z x z A x z A x z A
14 1 5 13 mp2b x z A x z A
15 14 nfi x z A
16 3 15 chvarvv x y A