Metamath Proof Explorer


Theorem nfcriOLDOLD

Description: Obsolete version of nfcri as of 26-May-2024. (Contributed by Mario Carneiro, 11-Aug-2016) Avoid ax-10 , ax-11 . (Revised by Gino Giotto, 23-May-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis nfcrii.1 _ x A
Assertion nfcriOLDOLD x y A

Proof

Step Hyp Ref Expression
1 nfcrii.1 _ x A
2 eleq1w z = y z A y A
3 2 nfbidv z = y x z A x y A
4 df-nfc _ x A z x z A
5 4 biimpi _ x A z x z A
6 df-nf x z A x z A x z A
7 6 albii z x z A z x z A x z A
8 sp z x z A x z A x z A x z A
9 7 8 sylbi z x z A x z A x z A
10 1 5 9 mp2b x z A x z A
11 10 nfi x z A
12 3 11 chvarvv x y A