Metamath Proof Explorer


Theorem nfcsb1d

Description: Bound-variable hypothesis builder for substitution into a class. (Contributed by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypothesis nfcsb1d.1 φ _ x A
Assertion nfcsb1d φ _ x A / x B

Proof

Step Hyp Ref Expression
1 nfcsb1d.1 φ _ x A
2 df-csb A / x B = y | [˙A / x]˙ y B
3 nfv y φ
4 1 nfsbc1d φ x [˙A / x]˙ y B
5 3 4 nfabdw φ _ x y | [˙A / x]˙ y B
6 2 5 nfcxfrd φ _ x A / x B