Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
nfcsbd
Metamath Proof Explorer
Description: Deduction version of nfcsb . Usage of this theorem is discouraged
because it depends on ax-13 . (Contributed by NM , 21-Nov-2005)
(Revised by Mario Carneiro , 12-Oct-2016)
(New usage is discouraged.)
Ref
Expression
Hypotheses
nfcsbd.1
⊢ Ⅎ y φ
nfcsbd.2
⊢ φ → Ⅎ _ x A
nfcsbd.3
⊢ φ → Ⅎ _ x B
Assertion
nfcsbd
⊢ φ → Ⅎ _ x ⦋ A / y ⦌ B
Proof
Step
Hyp
Ref
Expression
1
nfcsbd.1
⊢ Ⅎ y φ
2
nfcsbd.2
⊢ φ → Ⅎ _ x A
3
nfcsbd.3
⊢ φ → Ⅎ _ x B
4
df-csb
⊢ ⦋ A / y ⦌ B = z | [ ˙ A / y ] ˙ z ∈ B
5
nfv
⊢ Ⅎ z φ
6
3
nfcrd
⊢ φ → Ⅎ x z ∈ B
7
1 2 6
nfsbcd
⊢ φ → Ⅎ x [ ˙ A / y ] ˙ z ∈ B
8
5 7
nfabd
⊢ φ → Ⅎ _ x z | [ ˙ A / y ] ˙ z ∈ B
9
4 8
nfcxfrd
⊢ φ → Ⅎ _ x ⦋ A / y ⦌ B