Metamath Proof Explorer


Theorem nfcsbd

Description: Deduction version of nfcsb . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 21-Nov-2005) (Revised by Mario Carneiro, 12-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfcsbd.1 y φ
nfcsbd.2 φ _ x A
nfcsbd.3 φ _ x B
Assertion nfcsbd φ _ x A / y B

Proof

Step Hyp Ref Expression
1 nfcsbd.1 y φ
2 nfcsbd.2 φ _ x A
3 nfcsbd.3 φ _ x B
4 df-csb A / y B = z | [˙A / y]˙ z B
5 nfv z φ
6 3 nfcrd φ x z B
7 1 2 6 nfsbcd φ x [˙A / y]˙ z B
8 5 7 nfabd φ _ x z | [˙A / y]˙ z B
9 4 8 nfcxfrd φ _ x A / y B