Metamath Proof Explorer


Theorem nfcxfrd

Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses nfcxfr.1 A = B
nfcxfrd.2 φ _ x B
Assertion nfcxfrd φ _ x A

Proof

Step Hyp Ref Expression
1 nfcxfr.1 A = B
2 nfcxfrd.2 φ _ x B
3 1 nfceqi _ x A _ x B
4 2 3 sylibr φ _ x A