Metamath Proof Explorer


Theorem nfdif

Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses nfdif.1 _ x A
nfdif.2 _ x B
Assertion nfdif _ x A B

Proof

Step Hyp Ref Expression
1 nfdif.1 _ x A
2 nfdif.2 _ x B
3 dfdif2 A B = y A | ¬ y B
4 2 nfcri x y B
5 4 nfn x ¬ y B
6 5 1 nfrabw _ x y A | ¬ y B
7 3 6 nfcxfr _ x A B