Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The difference, union, and intersection of two classes
The difference of two classes
nfdifOLD
Metamath Proof Explorer
Description: Obsolete version of nfdif as of 14-May-2025. (Contributed by NM , 3-Dec-2003) (Revised by Mario Carneiro , 13-Oct-2016)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
nfdif.1
⊢ Ⅎ _ x A
nfdif.2
⊢ Ⅎ _ x B
Assertion
nfdifOLD
⊢ Ⅎ _ x A ∖ B
Proof
Step
Hyp
Ref
Expression
1
nfdif.1
⊢ Ⅎ _ x A
2
nfdif.2
⊢ Ⅎ _ x B
3
dfdif2
⊢ A ∖ B = y ∈ A | ¬ y ∈ B
4
2
nfcri
⊢ Ⅎ x y ∈ B
5
4
nfn
⊢ Ⅎ x ¬ y ∈ B
6
5 1
nfrabw
⊢ Ⅎ _ x y ∈ A | ¬ y ∈ B
7
3 6
nfcxfr
⊢ Ⅎ _ x A ∖ B