Metamath Proof Explorer


Theorem nfdisj

Description: Bound-variable hypothesis builder for disjoint collection. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfdisjw when possible. (Contributed by Mario Carneiro, 14-Nov-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfdisj.1 _ y A
nfdisj.2 _ y B
Assertion nfdisj y Disj x A B

Proof

Step Hyp Ref Expression
1 nfdisj.1 _ y A
2 nfdisj.2 _ y B
3 dfdisj2 Disj x A B z * x x A z B
4 nftru x
5 nfcvf ¬ y y = x _ y x
6 1 a1i ¬ y y = x _ y A
7 5 6 nfeld ¬ y y = x y x A
8 2 nfcri y z B
9 8 a1i ¬ y y = x y z B
10 7 9 nfand ¬ y y = x y x A z B
11 10 adantl ¬ y y = x y x A z B
12 4 11 nfmod2 y * x x A z B
13 12 mptru y * x x A z B
14 13 nfal y z * x x A z B
15 3 14 nfxfr y Disj x A B