Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Disjointness
nfdisjw
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for disjoint collection. Version of
nfdisj with a disjoint variable condition, which does not require
ax-13 . (Contributed by Mario Carneiro , 14-Nov-2016) (Revised by Gino Giotto , 26-Jan-2024)
Ref
Expression
Hypotheses
nfdisjw.1
⊢ Ⅎ _ y A
nfdisjw.2
⊢ Ⅎ _ y B
Assertion
nfdisjw
⊢ Ⅎ y Disj x ∈ A B
Proof
Step
Hyp
Ref
Expression
1
nfdisjw.1
⊢ Ⅎ _ y A
2
nfdisjw.2
⊢ Ⅎ _ y B
3
dfdisj2
⊢ Disj x ∈ A B ↔ ∀ z ∃ * x x ∈ A ∧ z ∈ B
4
nftru
⊢ Ⅎ x ⊤
5
nfcvd
⊢ ⊤ → Ⅎ _ y x
6
1
a1i
⊢ ⊤ → Ⅎ _ y A
7
5 6
nfeld
⊢ ⊤ → Ⅎ y x ∈ A
8
2
nfcri
⊢ Ⅎ y z ∈ B
9
8
a1i
⊢ ⊤ → Ⅎ y z ∈ B
10
7 9
nfand
⊢ ⊤ → Ⅎ y x ∈ A ∧ z ∈ B
11
4 10
nfmodv
⊢ ⊤ → Ⅎ y ∃ * x x ∈ A ∧ z ∈ B
12
11
mptru
⊢ Ⅎ y ∃ * x x ∈ A ∧ z ∈ B
13
12
nfal
⊢ Ⅎ y ∀ z ∃ * x x ∈ A ∧ z ∈ B
14
3 13
nfxfr
⊢ Ⅎ y Disj x ∈ A B