Metamath Proof Explorer


Theorem nfdisjw

Description: Bound-variable hypothesis builder for disjoint collection. Version of nfdisj with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses nfdisjw.1 _ y A
nfdisjw.2 _ y B
Assertion nfdisjw y Disj x A B

Proof

Step Hyp Ref Expression
1 nfdisjw.1 _ y A
2 nfdisjw.2 _ y B
3 dfdisj2 Disj x A B z * x x A z B
4 nftru x
5 nfcvd _ y x
6 1 a1i _ y A
7 5 6 nfeld y x A
8 2 nfcri y z B
9 8 a1i y z B
10 7 9 nfand y x A z B
11 4 10 nfmodv y * x x A z B
12 11 mptru y * x x A z B
13 12 nfal y z * x x A z B
14 3 13 nfxfr y Disj x A B