Metamath Proof Explorer


Theorem nfdju

Description: Bound-variable hypothesis builder for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022)

Ref Expression
Hypotheses nfdju.1 _ x A
nfdju.2 _ x B
Assertion nfdju _ x A ⊔︀ B

Proof

Step Hyp Ref Expression
1 nfdju.1 _ x A
2 nfdju.2 _ x B
3 df-dju A ⊔︀ B = × A 1 𝑜 × B
4 nfcv _ x
5 4 1 nfxp _ x × A
6 nfcv _ x 1 𝑜
7 6 2 nfxp _ x 1 𝑜 × B
8 5 7 nfun _ x × A 1 𝑜 × B
9 3 8 nfcxfr _ x A ⊔︀ B